Search
Filters
Close
RSS

Blog posts tagged with 'Tutorial'

How to Punch Down a Cat Cable into a Patch Panel

Punching-down a cat cable into a patch panel may seem like tricky business, but once you’ve got the basics down it becomes as easy as the proverbial pie. This high-level guide is here to help.

Punching Down Cat Cable

What You'll Need

  1. CAT Cables (Ethernet Cable)
  2. Patch Panels
  3. Punch Down Tool
  4. Cable Strippers
  5. Screw Driver

 


 

Step 1: Prepare the Cat Cable

Stripped CableTo start off with you will want to begin with preparing the cat cables you intend to punch into the patch panels. You with do so by removing the outer jacket with the cable stripper. If you do not have a cable stripper handy it can also be done with a sharp knife, but please be careful as this method result in both injury to yourself and damage to the inner copper cables.

Ideally you should remove approximately 1 inch (25mm) of the outer jacket, this ensures a nice clean fit into the patch panel without the risk of exposing too much cable and damaging it. Once the outer jacket has been removed you will notice 4 pairs of copper cables, making up a total of 8 cables. In order to successfully punch down the cables into the patch panel you will need to gently untwist the pairs so that the 8 cables can be individually worked work with.

 


 

Step 2: Prepare the Patch Panel

Patch PanelIn most cases full patch panels are made up various parts. That being said, it can prove very useful in most situations to break apart the patch panel into it’s small components. This allows for you to work with only the required parts of the panel and makes the entire project simpler to handle on the whole.

Take the screwdriver and begin by unscrewing the section of the panel you are going to work with and place the remainder to the side. While doing so take note of the label on the inside of the panel with the color code printed on to it. This will be explained in the next step

 


 

Step 3: Put Cat Cable into Patch Panel

Patch PanelIn order to correctly insert the Cat cable wires into the patch panel you will need to take a close look at the color code that is printed on the label adhered to the panel.Let’s take a closer look.

First off you will notice that there are in fact 2 pin-out types, these are typically labelled A and B respectively. Generally most installations would use pin-out B, but please be sure to check which one is right for your specific application.

Once you have selected a pin-out type you will see that each one has it’s own color code, with 4 solid colors and 4 stripes. Simply match the solid colored wires to the solid color slots and do the same with the stripes. Inserting the wires into the slots requires nothing more than gently pushing them in. Once all the wires have been correctly inserted it is time to being with the actual punching down.

 


 

Step 4: Punching Down

Punching DownFirst off you will notice that there are in fact 2 pin-out types, these are typically labelled A and B respectively. Generally most installations would use pin-out B, but please be sure to check which one is right for your specific application.

Once you have selected a pin-out type you will see that each one has it’s own color code, with 4 solid colors and 4 stripes. Simply match the solid colored wires to the solid color slots and do the same with the stripes. Inserting the wires into the slots requires nothing more than gently pushing them in. Once all the wires have been correctly inserted it is time to being with the actual punching down.

Patch Panel

In order to correctly punch down the wires into the patch panel you will need to make use of a Punch Down Tool. The tool itself is fairly simple in that it has a pointed side and a flat size. The pointed side is the side that will trim the ends of the wires to leave a clean cut.

Begin by positioning the tool over the wire you intend to punch down and then using as much force as required push down on the handle of the tool. This will both push the wire firmly into place and trim the ends at the same time., continue doing this for all the remaining wires. You may also notice that occasionally some of the wire ends remain, you can usually fix this by gently removing them by hand as the tool may not have cleaved all the way through the wires on the initial punch down.

 


 

Want to watch it done? Check out the video below for a short tutorial which outline most of what we have discussed in this guide.

How to Fusion Splice Fiber Optic Cable

Fusion Splicing is simply joining two optical fibers together by making use of heat. The two optical fibers should be fused in such as way as to allow light to be passed through them without scattering or reflecting light back at the point of the splice.

Cable Stripping

 

The heat used to fuse the two fibers together is usually in the form of an electric arc, however it can also be achieved using a laser or even gas flame, but these methods are considered dated and inferior . This very simple Fusion Splicing guide should help to explain the process without getting too technical.

What You'll Need

  1. Fiber Strippers
  2. Kevlar Cutter
  3. Splice Sleeves
  4. Alcohol Wipes
  5. Fiber Optic Cleaver
  6. Microscope (Not mandatory, but very useful for checking fiber ends)
  7. Fusion Splicer

 


 

Step 1: Stripping the Fibers 

Stripping FiberIt sounds simple enough right? Unfortunately this is not quite as simple as stripping the simple coating of your average house-hold copper cable. In this case you will first be removing the polymer coating by making use of Fiber Strippers, which are specially designed for stripping the coating off the fiber. Ideally 1 and half inches (40 mm) should be removed from each end of the fiber you are joining. This should be done incrementally and gently while ensuring the stripper is held at a slight angle during the process.

With the coating stripped from the fibers it is now time to simply clip away any excess, exposed Kevlar with your Kevlar cutter. Once completed slide one of your Splice Sleeves onto one of your fiber, you may not be able to do this once you have spliced the two fibers together so it is best to do it now.

 


 

Step 2: Clean, Cleave and Clean Again 

Cleave CableKeeping the fibers clean is of the utmost importance when it comes to fusion splicing. It cannot be repeated enough, ensure that the fibers you are working with are cleaned after every major interaction with them. You do this by gently wiping them down with Alcohol Wipes.

Once clean it is time to cleave the fibers. The fiber should ideally be cleaved using what is know as the score-and -break method, this is done to ensure that the end face is perfectly flat and perpendicular to the axis of the fiber. This is best done by making use of a quality Fiber Optic Cleaver. The closer the cleave angle is to 90 degrees on both fibers the better, this will result in less optical loss from the splice. After cleaving both fibers it is time to once again clean the ends with the Alcohol Wipes.

 


 

Step 3: Fusion Splicing 

Fusion SplicingIt is now time to make use of your Fusion Splicer, begin by placing each fiber into the guides on the Fusion Splicer and clamp them into places securely. Close the lid of the splicer and be sure to select the correct settings on the monitor and program in the correct fiber types into the Fusion Splicer. The fiber ends will be automatically moved into position, at this point a profuse cycle will begin and any remaining dirt on the fiber ends will be removed as preheating begins. Next the fusion splicer will attempt to align the two fibers by inspecting the cleaves, bad cleaves will result in misalignment and will be rejected. If the cleaves are good the fibers will be fused by an automatic arc cycle that heats the ends and feeds the fibers together at a controlled rate.

Once fusion has been completed the Fusion Splicer will inspect the splice and estimate the total optical loss of the splice. Should it need to be remade it will inform you. If all goes according to plan it is now time to remove the fibers from the guides and move the splice protector over the splice and shrink it to fit (Most splicing machines have a heating device for heat shrinking protective sleeves).

 


 

As previously mentioned, this is a very simple guide. There are many variables that must be taken into account when you are splicing different types of fiber. So while it is difficult to get down to specifics hopefully this guide should give you a good idea of the process as a whole and get you started. Just remember to take your time while splicing in order ensure a good clean splice, it will save time in the long run.

Need a Fusion Splicer? Check out the FS-8993 Core Alignment Fusion Splicer Kit.

A Quick Guide to Fiber Optic Connectors

You're about to begin a brand new fiber optic installation, or perhaps you're working on an existing one? You'll need a a good idea of what type of connectors will work best.

Fiber Optic Connectors

This simple guide should help you in understanding the various fiber optic connectors on the market and get you up and running in no time. Please note that there are many, many types of connectors and variants available, we will only be covering the most commonly used ones here.

LC Connector
LC Connector 

LC connectors are licensed by Lucent Technologies, now known as Alcatel-Lucent. These connectors are ideal for use in high-density applications due to their small size and feature a pull-proof design. They are available in both simplex and duplex versions with a 1.25mm zirconia ferrule. Additionally LC connectors also make use of an specialized latch mechanism in order to provide stability within rack mounts.

 


 

SC Connector
SC Connector 

SC connectors, also known as Subscriber Connectors, Square Connectors or Standard Connectors are non-optical disconnect connectors with a 2.5mm pre-radius-ed zirconia ferrule. They are ideal for quick patching of cables into rack or wall mounts due to their push-pull design. Available in simplex and duplex with a reusable duplex holding clip to allow for duplex connections.

 


 

FC Connector
FC Connector 

FC connectors are known as both Ferrule Connectors and Fiber Channel Connectors. They feature a durable threaded coupling and are best suited for use within telecoms applications and make use of non-optical disconnect.

 

 


 

ST Connector
ST Connector 

ST connectors or Straight Tip connectors make use of a semi-unique bayonet connection with a 2.5mm ferrule. ST’s are great fiber optic connectors for field installation due to their reliability and durability. They are available in both simplex and and duplex

 

 


 

MTP Connector
MTP / MPO Connector 

MTP Fiber Connector or Multiple-Fiber Termination Push-On/Pull-off is a brand name for a connector developed by US CONEC® and is an improved high performance version of an MPO Connector. MTP connectors are compatible with MPO connectors. The most common MTP connectors contain 12 fibers but can go up to 24 fibers in newer designs.

MTP is specifically designed for multi-fiber ribbon cables and the typical insertion loss is 0.25db, which is inline with standard SC and ST connectors. The UPC design makes use of a flat surface and the APC variant has an 8° angle in order to minimize back reflection. The connectors are available in Male (Pins) and Female (No Pins) versions.

 


 

MTRJ Connector
MT-RJ Connector 

MT-RJ Connector stands for Mechanical Transfer Registered Jack or Media Termination – Recommended Jack. MT-RJ connectors are designed to snap into Ethernet ports of various devices such as computers and routers in order to supply networks with fiber optic data transfer speeds.They are typically designed for multimode optic fibers but are available for single-mode as well. They are 2.45mm x 4.4mm in size.

 

With some luck, this guide has helped clear up a few things. However if you’re still not sure which fiber optic connectors are right for you, or perhaps you’d like some more information you can always get in touch with Fibertronics either by phone (877) 320 3143 or email sales@fibertronics.com.

How Do Fiber Optics Work?

These days fiber optic cables are used everywhere to connect our modern world and are able to send information across countries and vast oceans, but how do they work? Before we get too stuck in to the more technical stuff, why not check out the video below for a nice, simple summary of how it all comes together. 

 

How They Work 

Fiber optics are fairly simple to understand on a basic level. Essentially information in the form of light is sent from one place to another, this is generally done through fiber optic cable. The beauty of this comes from something known as Total Internal Reflection (TIR), what this means is that the light is able to be sent through a flexible fiber optic cable by simply ‘bouncing from one surface to another’ until it reaches it’s destination.

Internal Reflection Diagram
 

Reflection vs Refraction 

Any time light strikes a surface it can either be reflected from it (reflection) or pass through it (refraction). The key to transmission of light via fiber optics is to ensure that light hits the surface greater than the critical angle to ensure complete reflection and not refraction. This requires quite a bit of mathematics, but to simplify it one should ensure that the angle of the surface the light hits is not too great so as to ensure reflection takes place and not refraction.
 

Understanding the Structure of Fiber Optic Cable 

Fiber optic cable typically contains a core made of ultra-pure glass which is then surrounded by an outside layer of glass known as cladding. The cladding is designed manufactured in such a way as to decrease it’s index of refraction by using small bits of boron or germanium. The core and cladding are manufactured as a very long, thin piece of glass that is made by heating what is know as a preform with the center being the pure glass core and the outside is the cladding. It is then stretched to an length of unusually around 18.2 m (60 ft).

Single mode Diagram

Sending Data by Light 

Data is sent and received in our modern society in what is known as binary numbers, essentially 1’s and 0’s. Think of it as a light switch with 2 settings, either On (1) or Off (0). If you turn the light on and off at the switch with a specific pattern it can be used to form somewhat complex messages. Such as the example one below:

Binary Hello

Data is sent similarly through fiber optic cable in the form of laser light pulses using what is known as Pulse Code Modulation or PCM. Unfortunately this is a lengthy topic which maybe discussed in a future article.

In Summary 

Fiber optics allows us to send information across the globe at the speed of light (186,000 miles per second ) via specifically designed fiber optic cables by making clever use of light reflection and refraction.